

ДЕТЕКТОР РЕФРАКТОМЕТРИЧЕСКИЙ МОДЕЛЬ 102М

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

4215-003.1.4-81696414 P3

Оглавление

1. ВВЕДЕНИЕ	3
2. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ	3
2.1. Вид передней панели детектора	5
2.2. Вид задней панели детектора	5
3. TEXHUYECKUE XAPAKTEPUCTUKU	6
4. КОМПЛЕКТАЦИЯ	6
5. УСТАНОВКА ДЕТЕКТОРА	7
5.1. Размещение на рабочем месте и условия окружающей среды	7
5.2. Требования к электробезопасности	
6. ПОДГОТОВКА К РАБОТЕ	
6.1. Подсоединение коммуникаций и сетевого питания	
6.2. Промывка перед первым запуском	
6.3. Промывка после долгого хранения или расконсервации	
6.4. Подготовка подвижной фазы	
6.5. Промывка сравнительной ячейки	
7. ПОРЯДОК РАБОТЫ	
7.1. Включение	
7.2. Получение хроматограммы	
7.3. Выключение детектора	
7.4. Особенности работы с детектором	
8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ, КОНСЕРВАЦИЯ И ТРАНСПОРТИРОВКА	
8.1. Техническое обслуживание	
8.2. Консервация	
8.3. Транспортировка	
9. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ	
Приложение 1	13

1. ВВЕДЕНИЕ

Настоящее руководство предназначено для инженерного состава и персонала лабораторий при использовании детектора рефрактометрического модель 102М (далее - детектор). Руководство содержит описание процедур по обслуживанию, правила эксплуатации, хранения и транспортировки устройства.

Детектор предназначен для регистрации анализируемых веществ по показателю преломления и может быть использован в составе хроматографов с изократическим формированием потока подвижной фазы. Детектор позволяет регистрировать все вещества, которые способны растворяться в подвижной фазе и показатель преломления которых отличается от показателя преломления подвижной фазы. Раствор анализируемого вещества не должен полностью поглощать свет от источника.

К работе с детектором допускается обслуживающий персонал, имеющий среднее специальное или высшее образование, изучивший техническую документацию, правила работы с химическими реактивами по ГОСТ 12.1.007, правила обеспечения электробезопасности при работе с электроустановками по ГОСТ 12.1.019, правила по организации безопасности труда по ГОСТ 12.0.004 и методики выполнения измерений.

Настоящее руководство по эксплуатации распространяется на детектор рефрактометрический модель 102М для высокоэффективной жидкостной хроматографии, выпускаемый по ТУ 4215-003.1.4-81696414

2. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Принцип работы рефрактометрического детектора заключается в количественном измерении разности показателей преломления (Δn) между раствором образца в подвижной фазе и чистой подвижной фазой. Измерение разности показателей преломления осуществляется по изменению угла светового луча, прошедшего через кювету с раствором образца в подвижной фазе и кювету с раствором сравнения (подвижная фаза). Изменение угла светового луча детектируется дифференциальным фотодиодом, сигнал с которого усиливается, фильтруется и направляется на аналоговый выход детектора. Принципиальная оптическая схема детектора приведена на рис. 1.

В детекторе применена трехходовая кювета, в которой преломление образца происходит дважды в противоположных направлениях. В результате для подвижных фаз с различными показателями преломления не требуется дополнительной подстройки луча на дифференциальном светодиоде. Благодаря двойному преломлению во взаимно противоположных направлениях детектор регистрирует только показатель преломления образца, нивелируя изменение показателя преломления подвижной фазы в каналах сравнения. Следствием двойного преломления является нечувствительность рефрактометра к текущему значению температуры, определяющим фактором является равномерность температуры по объему кюветы.

Рис. 1. Принципиальная оптическая схема детектора

- 1. Источник света (светодиод)
- 2. Коллиматор
- 3. Первое подстроечное зеркало
- 5. Многоходовая кювета
- 5*, 5*** каналы для раствора сравнения
- 5** канал для анализируемого раствора
- 6. Второе подстроечное зеркало
- 7. Дифференциальный фотодиод

Детектор снабжен краном, обеспечивающим промывку сравнительной ячейки прибора потоком элюата без переключения гидравлических соединений.

2.1. Вид передней панели детектора

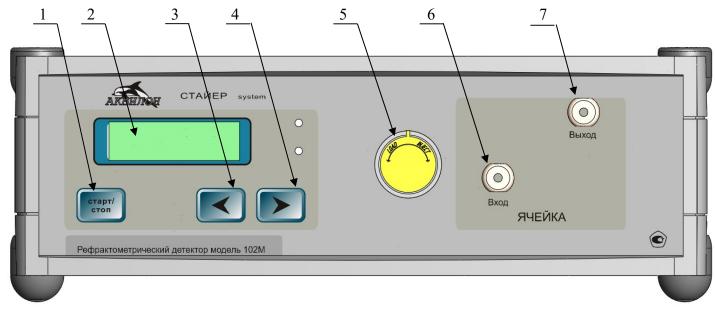


Рис.2. Вид передней панели детектора

- 1. Кнопка «Старт/Стоп»
- 2. Дисплей
- 3. Кнопка « < »
- 4. Кнопка « > »
- 5. Кран-переключатель «Промывка(LOAD) / Работа(INJECT)»
- 6. Входной фитинг
- 7. Выходной фитинг

Кран-переключатель «Промывка / Работа»

- 1. В крайнем левом положении («Промывка/LOAD») осуществляется промывка рабочей и сравнительной ячеек
- 2. В крайнем правом положении («Работа/INJECT») проводится анализ.

Внимание! Недопустимо оставлять кран переключатель в промежуточных (не крайних) положениях, при работе насоса это может вывести его из строя.

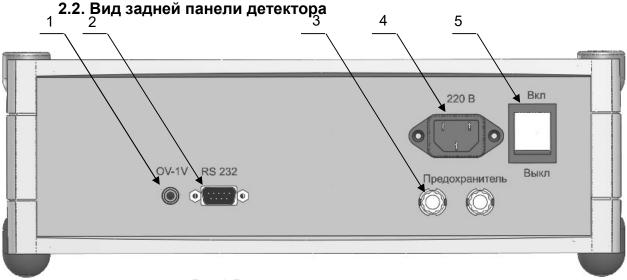


Рис.3 Вид задней панели детектора

- 1. Аналоговый выход RCA (до +2,5B) для подключения АЦП;
- 2. Выход RS-232;
- 3. Предохранитель;
- 4. Разъем кабеля сетевого питания;
- 5. Выключатель «сеть».

3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 2. Технические характеристики детектора

aomini	да 2. технические характеристики детектора	_
	Характеристика	Значение
1	Источник света	Светодиод
2	Длина волны источника света, нм	644
3	Объем аналитической кюветы, мм ³	2,88
4	Динамический диапазон, (∆n – разность показателей	
	преломления в рабочей кювете и в кювете сравнения),	
	Δn	1*10 ⁻⁷ ÷ 1*10 ⁻²
5	Рабочий диапазон показателя преломления (n)	1,31 ÷ 1,81
6	Абсолютная чувствительность по глюкозе, г, не менее	
		1*10 ⁻⁵
7	Термостатирование	Пассивное
8	Стабилизация температурного дрейфа	Двойное преломление
9	Уровень флуктуационных шумов нулевого сигнала:	
	на потоке 1 см³/мин дистиллированной воды при	
	постоянной времени 2 сек, ∆n, не более	4*10 ⁻⁶
	Шум без потока на дистиллированной воде при	
	постоянной времени 2 сек, Δn, не более	1*10 ⁻⁸
10	Дрейф нулевого сигнала:	
	на потоке дистиллированной воды, при постоянной	
	времени 2 сек, ∆п/ч, не более	5*10 ⁻⁴
11	Материал жидкостного тракта	PTFE, PEEK, SS316,
		стекло
12	Максимальная скорость потока через кювету, см³/мин,	
	не более	5
13	Выход аналоговый, В/полная шкала	1,25
14	Коэффициент пересчета из мВ в ∆n, (средний)	1,34*10 ⁻⁶
15	Фиксированый выход, В	1
16	Постоянная времени, сек	0,1;0,2; 0,5; 1; 2; 4; 10
17	Фитинги входные и выходные	Внутренняя резьба
		10-32" под ферулу
18	Время выхода на режим, мин, не более	40
19	Время непрерывной работы, ч, не менее	8
20	Питание от сети переменного тока,	
	напряжение/частота, В/Гц	220/50 или 110/60
21	Предохранитель, В (А)	250(1)
22	Потребляемая мощность, Вт, не более	25
23	Габаритные размеры (высота, ширина, глубина), мм	120x330x290
24	Масса, кг, не более	5

 Δn – относительные единицы рефракции (О.Е.Р.).

4. КОМПЛЕКТАЦИЯ

Таблица 3. Комплектация детектора

1 407 1711	да о: Комплектации детектора	
1	Детектор рефрактометрический модель 102M	1
2	Сетевой кабель питания	1
3	Кабель RS-232	1
4	Сливной капилляр, 1 м	1
5	Винт-ферула РЕЕК для сливного капилляра	1
6	Заглушки (установлены на приборе)	2
7	Руководство по эксплуатации 4215-003.1.4-81696414 РЭ	1
8	Упаковка	1

5. УСТАНОВКА ДЕТЕКТОРА

5.1. Размещение на рабочем месте и условия окружающей среды

Детектор устанавливают горизонтально в стойку с аналогичным оборудованием на насосы или на физический (химический) лабораторный стол так, чтобы обеспечить возможность доступа к задней панели.

Место установки должно быть чистым, температура и влажность воздуха — стабильными. Температура окружающего воздуха должна быть в пределах от 10 до 30° C, а относительная влажность от 20 до 90 %

5.2. Требования к электробезопасности

Подключение к однофазной сети переменного тока осуществляется через розетку с третьим заземляющим выводом.

6. ПОДГОТОВКА К РАБОТЕ

При транспортировке детектора при отрицательных температурах следует после распаковки детектора выдержать его не менее 4 часов или не менее суток в упаковке при комнатной температуре.

6.1. Подсоединение коммуникаций и сетевого питания

После установки детектора следует присоединить гидравлические коммуникации.

Отверните заглушки от входа и выхода прибора. Соедините с помощью стального винта с феррулой фитинг «Вход» детектора с выходным фитингом хроматографической колонки, а фитинг «Выход» с помощью фторопластового капилляра и винта-феррулы из РЕЕК со сливной емкостью. После установки линий, слегка потянув за них, убедитесь, что соединение плотное. Стальной винт затягивается ключом. Винт-феррула из РЕЕК – усилием от руки.

Соедините сетевым кабелем разъем сетевого питания 220В с розеткой.

6.2. Промывка перед первым запуском

Детектор поставляется с заполненными изопропиловым спиртом коммуникациями, поэтому перед работой их желательно промыть. В случае работы с водными растворителями используйте воду, при работе с неполярными растворителями используйте гексан или другой аналогичный растворитель совместимый с изопропиловым спиртом.

Для проведения промывки:

- 1. Заполните насос дистиллированной водой или гексаном;
- 2. Установите на детекторе переключатель «Промывка / Работа» в положение "LOAD" для промывки сравнительной ячейки (рукоятка повернута в крайнее левое положение, см. рис.2)
- 3. Подсоедините выходной фитинг насоса с помощью капилляра напрямую ко входу рефрактометра.
- 4. Установите расход на насосе 3 см³/мин, и прокачивайте его в течение 5 мин;
- 5. Переключите на детекторе переключатель «Промывка / Работа» в положение "INJECT" (рукоятка повернута в крайнее правое положение, см. рис.2). (переключение допускается производить при работающем насосе, но процесс поворота рукоятки переключателя не должен по времени превышать 1, с либо переключение производится при остановленном насосе)
- 6. Прокачивайте рабочую линию в течение 5 мин для промывки рабочей ячейки;
- 7. После завершения промывки отверните коммуникации и заверните заглушки во входной и выходной фитинги.

6.3. Промывка после долгого хранения или расконсервации

При длительном хранении возможно образование отложений на внутренней поверхности кюветы. В этом случае для промывки кюветы используют 1% водный раствор углекислого натрия – промывной раствор №1.

Внимание! Перед выполнением п.6.3. выполните п.6.2. Еслии вы использовали не смешивающиеся с водой растворители промойте прибор изопропиловым спиртом. Если использовали водные системы - промойте водой.

Установите переключатель «Промывка / Работа» в положении "Промывка" (рукоятка повернута в крайнее левое положение, см. рис.2).

Для промывки необходимо воспользоваться шприцем с разъемом LUER, в который набирается промывной раствор №1. Заверните шприц во входной фитинг прибора, аккуратно прокачайте 3-5 мл раствора, оставьте кювету с раствором на 10 – 20 минут, после чего промойте водой, как описано в п. 6.2.

6.4. Подготовка подвижной фазы

При работе с детектором используется стандартная процедура подготовки подвижной фазы для ВЭЖХ, т.е. фильтрование и дегазация. Особое внимание следует уделить процедуре приготовления подвижной фазы, т.к. незначительные ошибки при приготовлении навесок или применение загрязненных растворителей могут привести к изменению показателя преломления подвижной фазы и, как следствие, к изменению чувствительности детектора.

6.5. Промывка сравнительной ячейки

Для промывки сравнительной ячейки установите переключатель «Промывка / Работа» в положение "Промывка" (рукоятка повернута в крайнее левое положение, см. рис.2). Если в прибор поступает элюент, то ячейка будет промыта в течении нескольких минут (порядка 5 минут для скорости 1 мл/мин). При замене элюента не допускается использование не смешивающихся растворителей. Для проведения анализа установите переключатель «Промывка / Работа» в положении "Работа" (рукоятка повернута в крайнее правое положение)

7. ПОРЯДОК РАБОТЫ

7.1. Включение

Включите компьютер или систему регистрации, включите детектор выключателем «Сеть» на задней панели, включите остальные модули хроматографа.

При включении детектора происходит его внутренний тест. При благополучном прохождении теста прибор переходит в режим работы и в первой строке появляется надпись RIU. В случае появления ошибки при внутреннем самотестировании прибор выведет сообщение ERRORS DETECTED и ее номер, если ошибок несколько нажатие кнопки Старт/стоп будет поочередно их открывать, а затем перейдет в главное меню.

В главном меню в правой верхней части дисплея отображается текущее значение сигнала детектора в RIU (относительных единицах рефракции).

В нижней строке дисплея слева отображается текущий коэффициент усиления (DAC Gain) и полярность сигнала для аналогового выхода (+или -)

Примечание! Данные параметры влияют только на сигнал получаемый с аналогового выхода.

В нижней строке дисплея справа отображается текущее значение сдвига нуля.

При работе детектора с программой Мультихром данные параметры в зависимости от версии прибора регулируются в программе Мультихром,

При кратковременном нажатии кнопки Старт/стоп производится обнуление текущего сигнала (AUTOZERO) и внизу справа появляется значение текущего сдвига нуля.

При нажатии и удержании кнопки Старт/стоп и кнопки влево производится отмена обнуления текущего сигнала (отмена AUTOZERO)

При нажатии и удержании кнопки Старт/Стоп прибор переходит в меню настройки параметров.

ВНИМАНИЕ! Данное меню используется только при работе с детектором без управления и регулирует настройки для аналогового выхода. На работу прибора с ПО Мультихром данные настройки не влияют.

Изменения значений в данном меню производится с помощью кнопок-стрелок, и переход к следующему параметру краткосрочным нажатием кнопки «Старт/Стоп». Для сохранения внесенных изменений нажать и удерживать кнопку «Старт/Стоп». Детектор запомнит внесенные изменения и вернется в главное меню.

TAU – постоянная времени, позволяет выбирать значения от 0,1 до 10. С ростом значения увеличивается степень сглаживания, фильтруются пики-всплески, но растет искажение измеряемых аналитических пиков. Значение по умолчанию 1.

DAC Gain — Коэффициент усиления, выбирается из ряда значений 0,1; 0,2;0,5;1;2;5;10;20;50;100. С ростом коэффициента усиления увеличивается чувствительность для малых концентраций, но снижается максимальное измеряемое значение. По умолчанию установлено 1.

DAC Inverse - полярность сигнала, выбирается либо «+» либо «-». Переворачивает пики.

DAC OFFSET — Сдвиг цифро-аналогового преобразователя, используется для увеличения диапазона измерения. Выбирается из ряда значений -2;-1:0;1;2 и позволяет точнее обрабатывать сигналы сдвинутые относительно нуля.

После завершения всех изменений для их сохранения и возврата в главное меню нажать и удерживать кнопку «Старт/Стоп»

В случае возникновения сбоев диагностируется ошибка

ADC REFERENCE – неисправность измерительной платы.

ANALOG OUT – сбой внутренней калибровки.

LED CIRCUITS – неисправность светодиода

В случае появления сбоя иногда достаточно выключить и заново включить детектор. Если ошибка появляется регулярно необходимо обратиться в сервисную службу

.

7.2. Получение хроматограммы

После ввода образца система регистрации запишет хроматограмму, что является результатом работы детектора в составе хроматографа.

7.3. Выключение детектора

Выключите питание детектора выключателем «сеть» на задней панели или общим выключателем.

7.4. Особенности работы с детектором

На режим работы детектора влияет выбор и приготовление подвижной фазы, а также приготовление образца. Следует готовить раствор образца на подвижной фазе, т.к. это позволит уменьшить системные пики и оптимизирует процесс разделения на хроматографической колонке. Подвижную фазу после приготовления необходимо дегазировать и рекомендуется профильтровать

Если существует возможность выбора подвижной фазы, следует выбрать ту, которая обладает наибольшей разницей показателей преломления по сравнению с образцом. В этом случае чувствительность по образцу будет максимальная.

При анализе молекулярно-массового распределения водорастворимых образцов следует использовать подвижную фазу, максимально приближенную по солесодержанию к раствору образца, это позволит избежать больших интерферирующих пиков в области выхода низкомолекулярных соединений

Значение ширины наиболее узкого пика на хроматограмме должно превышать более, чем в десять раз значение постоянной времени, иначе пики могут быть значительно искажены. Например, при ширине пика 15 секунд и выбранной постоянной времени 2 секунды форма хроматографического пика будет искажена, в этом случае рекомендуется установить константу времени 0,5 или 0,2 секунды.

8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ, КОНСЕРВАЦИЯ И ТРАНСПОРТИРОВКА

8.1. Техническое обслуживание

Детектор относится к разряду обслуживаемых устройств. Обслуживание детектора заключается в ежегодной процедуре промывки детектора согласно п.6.4. Рекомендуется производить данную процедуру перед проведением ежегодных поверочных испытаний.

8.2. Консервация

Производить консервацию рекомендуется в случае перерыва в работе более 10 дней, либо при необходимости транспортировки детектора.

Консервация заключается в заполнении всех линий детектора изопропиловым спиртом (см. п.6.3.) и установке заглушек во входные и выходные фитинги.

Внимание! Перед консервацией изопропиловым спиртом промойте детектор совместимым растворителем, например, водой после использования солевых буферных растворов.

8.3. Транспортировка

Транспортировка детектора должна осуществляться согласно ТУ 4215-003.1.4-81696414 в упаковке фирмы-производителя или в упаковке, удовлетворяющей нормам ТУ 4215-003.16-81696414.

9. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Таблица 5. Возможные неисправности детектора и способы их устранения.

Неисправность	Возмо	жная причина	Способ устранения
1. Устройство не включается, не горит	1.1.Нет сетевого питания	1.1.1.Нет сетевого питания в розетке	1.1.1.1.Найдите розетку с сетевым питанием
индикатор питания.		1.1.2.Плохое соединение сетевого кабеля с устройством	1.1.2.1.Разъедините и снова соедините сетевой кабель.
		1.1.3.Неисправен сетевой кабель	1.1.3.1.Замените сетевой кабель
		1.1.4.Сгорел предохранитель	1.1.4.1.Замените предохранитель аналогичным, см. табл. 1
	1.2.Устройство неисправно	1.2.1.Обрыв внутренних цепей	1.2.1.1. Обратитесь в сервисную службу
2. Нет отклика на хроматограмме на нажатие кнопок «Старт/Стоп»	2.1. Аналоговый сигнал от детектора не приходит на систему регистрации	2.1.1. Не подключен аналоговый кабель	2.1.1.1. Подключите аналоговый кабель к детектору и/или системе регистрации
	2.2. Неправильно настроенная система сбора данных	2.2.1. Ошибки при настройке системы регистрации	2.2.1.1. Обратитесь к руководству пользователя программного обеспечения системы регистрации
3. Резкие пики на хроматограмме	3.1. Пузырьки воздуха в кювете	3.1.1. Плохая дегазация подвижной фазы	3.1.1.1. Дегазируйте подвижную фазу.
			3.1.1.2. Аккуратно на доли секунды закройте пальцем сливной капилляр а затем отпустите
		3.1.2.Не заполнен или плохо заполнен сравнительный канал детектора	3.1.2.1. Проведите процедуру согласно п.6.5.
	3.2. Помехи электрической сети	3.2.1. Наводки от высокочастотных источников	3.2.1.1. Проверьте заземление прибора.
		электромагнитного излучения	3.2.1.2. Установите сетевой фильтр
	3.3. Повреждена кювета	3.3.1. Нарушение герметичности прокладок или разрушение кюветы	3.3.1.1. Обратитесь в сервисную службу
4. Низкая чувствительность и/или повышенный шум	4.1. Детектор реагирует на пульсацию насоса	4.1.1. Высокое сопротивление на выходе детектора	4.1.1.1. Поставьте сливной капилляр большего диаметра, опустите сливную емкость ниже уровня детектора
	4.2. Загрязнена подвижная фаза	4.2.1. Неудовлетворительное качество исходных компонентов	4.2.1.1. Замените растворители и/или соли, используемые при приготовлении буфера, на реактивы соответствующей чистоты. (см. п.7.4.)
		4.2.2. Ёмкость для подвижной фазы была загрязнена предыдущей подвижной фазой или в гидравлической линии осталась предыдущая подвижная фаза	4.2.2.1. Используйте небольшое количество подвижной фазы для предварительного споласкивания емкости для ПФ и/или промывки гидравлических линий

5. Слишком высокий дрейф базовой линии	5.1. Загрязнена подвижная фаза	5.1.1. Нестабильность подвижной фазы во времени	5.1.1.1. Герметизируйте емкость для ПФ или продувайте ее инертным газом.
		5.1.2. Происходит вымывание сильноудерживаемых компонентов из колонки	5.1.2.1.Промойте колонку и детектор «сильным» растворителем, например, 100% ацетонитрилом. Или дождитесь прекращения дрейфа.
	5.2. Повреждена электроника детектора	5.2.1. Повреждение или выработка ресурса электронных элементов	5.2.1.1. Обратитесь в сервисную службу
	5.3. Меняется температура детектора	5.3.1. Меняется температура в помещении	5.3.1.1. Установите детектор в таком месте, где за время работы температура не меняется более чем на 1° С
		5.3.2. Из термостата в детектор поступает слишком горячая подвижная фаза.	5.3.2.1. Соедините колонку в термостате и детектор с помощью стального капилляра длиной около 1 метра
6. Резкое зашкаливание детектора.	6.1. Световой поток не попадает на дифференциальный фотодиод или попадает	6.1.1. Используется подвижная фаза со слишком высоким показателем преломления.	6.1.1.1. Перейдите на растворители с меньшим показателем преломления (см. табл. 1)
	на одну половину		6.1.1.2. Уменьшите солесодержание в ПФ
		6.1.2. Нарушена юстировка оптической схемы	6.1.2.1. Обратитесь в сервисную службу
7. Нет жидкости на выходе из детектора, при этом на вход в детектор жидкость подается	7.1. Повреждена кювета или соединительные капилляры	7.1.1. Нарушение герметичности прокладок или разрушение кюветы	7.1.1. Обратитесь в сервисную службу
8. Процесс самодиагностики завершился сообщением ERROR с указанием номера ошибки	8.1.Сбой электронных компонентов	8.1.1. Неисправность светодиода 8.1.2. Неисправность фотодиода. 8.1.3. Неисправность питания светодиода или фотодиода 8.1.4. Нарушена юстировка 8.1.5. Неисправность электроники	8.3.1.1. Выключите и через несколько минут включите прибор для повторного прохождения самотестирования. 8.3.1.2. Обратитесь в сервисную службу.

Компания-производитель оставляет за собой право на внесение в конструкцию детектора изменений, не ухудшающих его эксплуатационные характеристики

Приложение 1.

Промывные и консервирующие растворы.Таблица 1. Промывные и консервирующие растворы, применяемые для детектора рефрактометрического модель 102М.

	Наиманараниа	Пля ного мололи омотоя	Соотор
	Наименование	Для чего используется	Состав
1	Дистиллированная	Промывка при расконсервации	Дистиллированная
	вода		вода
2	Промывной раствор	Промывка при расконсервации,	1-2% раствор
	Nº1	при проведении технического	карбоната натрия в
		обслуживания	дистиллированной
			воде
3	Изопропиловый	Промывка и заполнение при	Изопропиловый спирт
	спирт	консервации	